Featured event

Spiral tunnel

SILO Seminar Series: Elias Bareinboim

Event Details

When: March 15, 2017, 12:30 PM

Location: 3rd Floor Orchard View Room , Discovery Building

Contact: 608-316-4401, hstampfli@wisc.edu

Elias Bareinboim

Elias Bareinboim

Causal Inference and the Data-Fusion Problem

Video: https://vimeo.com/209267168

Causal inference is usually dichotomized into two categories, experimental (Fisher) and observational (Pearl) which, by and large, are studied separately. Reality is more demanding. Experimental and observational studies are but two extremes of a rich spectrum of research designs that generate the bulk of the data available in practical, large scale situations. In typical medical explorations, for example, data from multiple observations and experiments are collected, coming from distinct experimental setups, different sampling conditions, and heterogeneous populations. 

In this talk, I will discuss some of the latest results in the field of causal inference that attempt to make sense of large and heterogeneous amounts of data. In particular, I will introduce the data-fusion problem, which is concerned with piecing together multiple datasets collected under disparate conditions (to be defined) so as to obtain statistically valid answers to queries of interest. The availability of multiple heterogeneous datasets presents new opportunities to data analysts since the knowledge that can be acquired from combined data would not be possible from any individual source alone. However, the biases that emerge in heterogeneous environments require new analytical tools. Some of these biases, including confounding, sampling selection, and cross-population biases, have been addressed in isolation, largely in restricted parametric models. I will present my work on a general, non-parametric framework for handling these biases and, ultimately, a theoretical solution to the problem of data-fusion in causal inference tasks. I will end the talk discussing some of the implications of this new framework to decision-making, including the new, sharp boundary between population-level versus individual-level (personalized) inferences. 

Suggested readings: 

E. Bareinboim and J. Pearl, Causal inference and the Data-Fusion Problem, Proceedings of the National Academy of Sciences, 113(27): 7345-7352, 2016.

E. Bareinboim, A. Forney, and J. Pearl, Bandits with Unobserved Confounders: A Causal Approach, Proceedings of Neural Information Processing Systems (NIPS), 2015. 


Elias Bareinboim is an assistant professor in the Department of Computer Science at Purdue University, with a courtesy appointment in Statistics. His research focuses on causal and counterfactual inference and their applications to data-driven fields. Bareinboim received a Ph.D. in Computer Science from UCLA working with Judea Pearl. His doctoral thesis was the first to propose a general solution to the problem of “data-fusion” and provides practical methods for combining datasets generated under different experimental conditions. Bareinboim’s recognitions include IEEE AI’s 10 to Watch, the Dan David Prize Scholarship, the Yahoo! Key Scientific Challenges Award, and the 2014 AAAI Outstanding Paper Award.

SILO is a lecture series with speakers from the UW faculty, graduate students or invited researchers that discuss mathematical related topics. The seminars are organized by WID’s Optimization research group and sponsored by generous support of the Advance Technology Group of the 3M Company and the Analytics Group of Northwestern Mutual.
SILO’s purpose is to provide a forum that helps connect and recruit mathematically-minded graduate students. SILO is a lunch-and-listen format, where speakers present interesting math topics while the audience eats lunch.