Federico Rey

Federico Rey
Gut bacterial metabolism and human health

Years at WID

2018 - present

Research Description

Humans harbor large microbial communities in the gastrointestinal tract. This collection of microbes (microbiota) and their associated genes (microbiome) affect many aspects of our physiology. Host diet determines gut microbial metabolism, which in turn modifies the nutritional impact of many dietary components. Thus, in principle, the gut microbiota can be targeted through diet to promote health. However, to successfully manipulate this microbial bioreactor, we need to understand how microbes metabolize nutrients, how they interact with each other as a function of diet, and their impact on the host. The overall goal of our research is to dissect diet by microbiota interactions that impact human health, so that therapeutic/preventive dietary recommendations can be made based on the metabolic potential of a subject’s microbiome. Gut microbial metabolism of specific dietary components (e.g., choline, flavonoids) generates compounds that can impact cardiovascular diseases. The microbes responsible for such transformations, and their representation in humans remain poorly characterized. Projects in my lab aim at identifying human gut bacterial species that transform some of these compounds, the genes involved in these processes, their regulation and their impact in the development of cardiovascular disease. Towards this end, we are using gnotobiotic mouse models of cardiovascular disease, bacterial genetics, transcriptional profiling and metabolomics.

Selected Publications

  • Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG, Gu X, Skye SM, Roberts AB, Wu Y, Li L, Shahen CJ, Wagner MA, Hartiala JA, Kerby RL, Romano KA, Han Y, Obeid S, Lüscher TF, Allayee H, Rey FE, DiDonato JA, Fiehn O, Tang WHW, Hazen SL (2018) Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight 3(6): 10.1172/jci.insight.99096 Pubmed
  • Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, Carlsson CM, Asthana S, Zetterberg H, Blennow K, Bendlin BB, Rey FE (2017) Gut microbiome alterations in Alzheimer's disease. Sci Rep 7(1):13537 (PMC5648830) 10.1038/s41598-017-13601-y Pubmed
  • Romano KA, Martinez-Del Campo A, Kasahara K, Chittim CL, Vivas EI, Amador-Noguez D, Balskus EP, Rey FE (2017) Metabolic, Epigenetic, and Transgenerational Effects of Gut Bacterial Choline Consumption. Cell Host Microbe 22(3):279-290.e7 (PMC5599363) 10.1016/j.chom.2017.07.021 Pubmed
  • Krautkramer KA, Rey FE, Denu JM (2017) Chemical signaling between gut microbiota and host chromatin: What is your gut really saying? J. Biol. Chem. 292(21):8582-8593 (PMC5448088) 10.1074/jbc.R116.761577 Pubmed
  • Kreznar JH, Keller MP, Traeger LL, Rabaglia ME, Schueler KL, Stapleton DS, Zhao W, Vivas EI, Yandell BS, Broman AT, Hagenbuch B, Attie AD, Rey FE (2017) Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes. Cell Rep 18(7):1739-1750 (PMC5325228) 10.1016/j.celrep.2017.01.062 Pubmed
  • Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, Keller MP, Attie AD, Rey FE, Denu JM (2016) Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Mol. Cell 64(5):982-992 (PMC5227652) Pubmed