Xuehua Zhong

Xuehua Zhong

Xuehua Zhong

Assistant Professor, Genetics, Epigenetics

Years Active



  • B.S., Wuhan University, China
  • M.S., Wuhan University, China
  • Ph.D., The Ohio State University
  • Postdoctoral Research, University of California, Los Angeles

Research Description

Epigenetic Regulation in Plant Growth and Development

Epigenetic regulation is a process whereby genes can inherit different states of activity in the absence of any changes in the DNA sequences. One such epigenetic system involves the addition of a chemical mark on DNA, so-called DNA methylation, which causes silencing of underlying genes. DNA methylation-based gene silencing can be very stable and in many cases mitotically heritable. Epigenetic modifications of histones (proteins that package and organize DNA), such as methylation and acetylation, play crucial roles in regulating all DNA-dependent processes including transcription, replication, DNA repair and recombination in diverse organisms. Mis-regulation and abnormalities of histone modifications are often observed in plant and animal diseases.

Given the great importance of epigenetic regulation of gene expression in many aspects of biology, ranging from genome integrity, imprinting, cellular differentiation, normal growth and development, disease formation, to potential biotechnological applications, our research goal is to understand the fundamental mechanisms of chromatin-based gene regulation. We study how various chromatin factors are recruited to chromatin to “read” and ‘translate” epigenetic information into differential gene expression patterns under normal growth and development as well as stress conditions. Knowledge gained from such studies should have high and broad impacts on our understanding of how distinct chromatin modifications coordinate with each other to regulate gene expression critical for diverse biological processes. They may also contribute to the development of new tools for applied research.

Some outstanding questions we are interested in answering are:

• How does dynamic epigenetic modification regulate gene expression for proper growth and development?

• How do chromatin alternations lead to changes in stable gene expressions?

• How do different developmental and environmental stimuli influence the chromatin dynamics?

• How are chromatin modifications established and maintained under stress conditions?

• Are altered chromatin structures stable and inheritable?

To address these questions, we use Arabidopsis thaliana as our main experimental model system because of its amenability to genetic manipulations, small genome, availability and viability of most epigenetic mutants. Experimentally, we will use a combination of molecular, genetic, genomic, proteomic, biochemical and structural approaches.


Selected Publications

  • Histone Lysine-to-Methionine Mutations Reduce Histone Methylation and Cause Developmental Pleiotropy. Sanders D, Qian S, Fieweger R, Lu L, Dowell JA, Denu JM, Zhong X. Plant Physiol. 2017 Apr;173(4):2243-2252.
  • POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in Arabidopsis. Kim YJ, Wang R, Gao L, Li D, Xu C, Mang H, Jeon J, Chen X, Zhong X, Kwak JM, Mo B, Xiao L, Chen X. Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14858-14863.
  • POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis. Chen X, Lu L, Mayer KS, Scalf M, Qian S, Lomax A, Smith LM, Zhong X. Elife. 2016 Nov 22;5. pii: e17214. doi: 10.7554/eLife.17214.
  • Systematic identification of Ctr9 regulome in ERα-positive breast cancer. Zeng H, Lu L, Chan NT, Horswill M, Ahlquist P, Zhong X, Xu W. BMC Genomics. 2016 Nov 9;17(1):902.
  • p53-/- synergizes with enhanced NrasG12D signaling to transform megakaryocyte-erythroid progenitors in acute myeloid leukemia. Zhang J, Kong G, Rajagopalan A, Lu L, Song J, Hussaini M, Zhang X, Ranheim EA, Liu Y, Wang J, Gao X, Chang YI, Johnson KD, Zhou Y, Yang D, Bhatnagar B, Lucas DM, Bresnick EH, Zhong X, Padron E, Zhang J. Blood. 2017 Jan 19;129(3):358-370.

more at Google Scholar